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Abstract

An efficient multi-block Newton–Krylov algo-
rithm using the compressible Navier–Stokes
equations is presented for the analysis and de-
sign of high-lift airfoil configurations. The pre-
conditioned generalized minimum residual (GM-
RES) method is applied to solve the discrete-
adjoint equation, leading to a fast computation
of accurate objective function gradients. Further-
more, the GMRES method is used in conjunc-
tion with an inexact-Newton approach to obtain
fast solutions of the Navier–Stokes equations.
Optimization constraints are enforced through a
penalty formulation, and the resulting uncon-
strained problem is solved via a quasi-Newton
method. Several design examples are provided
which demonstrate that this algorithm provides
an effective and practical tool for the design of
multi-element airfoil configurations.

1 Introduction

The design of an efficient high-lift configuration
can significantly improve the aerodynamic per-
formance of an aircraft, as well as provide weight
savings and reductions in the complexity of the
high-lift system [27]. Consequently, the applica-
tion of gradient-based optimization algorithms to
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the design of high-lift multi-element configura-
tions is an active area of research [5, 7, 2, 11, 1,
19, 13]. This challenging optimization problem
features complex geometry, with strict geometry
constraints, and complex flow physics, such as
regions of separated flow and confluent boundary
layers and wakes.

A gradient-based algorithm for aerodynamic
shape optimization problems can be divided into
four modules: 1) an optimizer, 2) a flow solver, 3)
a gradient computation algorithm, and 4) a grid-
perturbation strategy. The accuracy of the opti-
mization ultimately depends on the modeling of
the flowfield, and hence, the flow solver. Accu-
rate modeling of the complex flowfields encoun-
tered in high-lift problems requires the solution
of the compressible Navier–Stokes equations in
conjunction with a turbulence model. A detailed
review of flow solvers and results for the pre-
diction of high lift is provided by Rumsey and
Ying [24].

For a given number of objective function and
gradient evaluations, the efficiency of the opti-
mization procedure is dominated by the time re-
quired to solve the flowfield equations and com-
pute the gradient. In particular, significant com-
putational effort is required to obtain accurate
gradients. Generally, the cost of one gradient
evaluation is equivalent to between one and two
flowfield solutions [23, 18, 19, 11, 6, 12].

In [16], we presented an accurate and efficient
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algorithm for the calculation of the objective
function gradient via the discrete-adjoint method.
The adjoint equation is solved using the pre-
conditioned generalized minimum residual (GM-
RES) Krylov subspace method [25]. Overall, the
gradient is obtained in just one-fifth to one-half
of the time required for a warm-started flow solu-
tion. The performance of the algorithm is demon-
strated for several design examples, all based on
single-element airfoils.

The objectives of this work are to extend and
apply the Newton–Krylov algorithm presented
in [16] to the analysis and design of high-lift
multi-element configurations. The new algo-
rithm is based on an established flow solver TOR-
NADO [15, 9, 14]. The validation and perfor-
mance of the new algorithm are demonstrated
for lift-enhancement design examples based on
a two-element take-off configuration.

2 Problem Formulation

The aerodynamic shape optimization problem
consists of determining values of design variables
X, such that the objective functionJ is minimized

min
X

J (X,Q) (1)

subject to constraint equationsCj ,

Cj(X,Q)≤ 0 j = 1, . . . ,Nc (2)

where the vectorQdenotes the conservative flow-
field variables andNc denotes the number of con-
straint equations. The flowfield variables are
forced to satisfy the governing flowfield equa-
tions, F , within a feasible region of the design
spaceΩ,

F (X,Q) = 0 ∀ X ∈Ω (3)

which implicitly definesQ = f (X).
The objective function is given by

J =





ωL

(
1− CL

C∗L

)2
+ωD

(
1− CD

C∗D

)2
if CD > C∗D

ωL

(
1− CL

C∗L

)2
otherwise

(4)
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whereC∗D andC∗L represent the target drag and lift
coefficients, respectively. The weightsωD and
ωL are user specified constants. This objective
can be used for both lift-enhancement and lift-
constrained drag minimization problems.

The design variables are based on a B-spline
parameterization [3, 16] of the airfoil. An exam-
ple is shown in Fig. 1, where a B-spline curve
is fitted over the upper surface of the main ele-
ment, and also the upper surface of the flap for the
NLR 7301 configuration [28]. The vertical coor-
dinates of the B-spline control points are used as
design variables. Depending on the problem of
interest, additional design variables may include
the angle of attack, and the horizontal and verti-
cal translation associated with each high-lift ele-
ment in multi-element configurations, labeled as
Fx andFy in Fig. 1. The horizontal and vertical
translation design variables control the gap and
overlap distances in the slot region of the airfoil,
as defined in Fig. 2.

The constraint equations, Eq. 2, represent air-
foil thickness constraints that are used to ensure
feasible designs. The constraints are given by

h∗(zj)−h(zj)≤ 0 (5)
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whereh∗(zj) represents the minimum allowable
thickness at locationzj expressed as a fraction of
the airfoil’s chord. For multi-element configura-
tions, it is also necessary to constrain the gap and
overlap distances. These constraints are required
in order to prevent collisions among the elements
and to ensure a reasonable computational grid.

The governing flow equations are the com-
pressible two-dimensional thin-layer Navier–
Stokes equations in generalized coordinates,

∂Ê(Q̂,X)
∂ξ

+
∂F̂(Q̂,X)

∂η
= Re−1∂Ŝ(Q̂,X)

∂η
(6)

whereQ̂ = J−1Q = J−1[ρ,ρu,ρv,e]T is the vec-
tor of conservative dependent state variables,ξ
and η are the streamwise and normal general-
ized coordinates, respectively, andJ is the Jaco-
bian of the coordinate transformation from Carte-
sian coordinates. VectorŝE andF̂ represent the
convective flux vectors, the viscous flux vector is
given byŜ, andRedenotes the Reynolds number.
Sutherland’s law is used to determine the laminar
viscosity. The equations are in non-dimensional
form. For further details, see [22]. The turbulent
viscosity is modeled with the Spalart–Allmaras
turbulence model [26]. All cases considered in
this study are assumed to be fully turbulent, and
therefore, the laminar-turbulent trip terms are not
used.

3 Numerical Method

The aerodynamic shape optimization problem
defined by Eqs. 1–3 is cast as an unconstrained
problem. This is accomplished by lifting the side
constraints, Eq. 2, into the objective functionJ
using a penalty method. Furthermore, the con-
straint imposed by the flowfield equations, Eq. 3,
is satisfied at every point within the feasible de-
sign space, and consequently these equations do
not explicitly appear in the formulation of the op-
timization problem.

The unconstrained problem is solved using
the BFGS quasi-Newton method in conjunction
with a backtracking line search [20, 16]. At
each step of the line search, the objective func-
tion value and gradient are required in order to

construct a local cubic interpolant. Note that
the optimization problem is based on the discrete
form of the flowfield equations. Using the dis-
crete approach, we expect the gradient to vanish
at the optimum solution. In the following sec-
tions, we present the formulation for the penal-
ized objective function, as well as the algorithms
used for the flowfield evaluation (objective func-
tion value), the gradient evaluation, and the grid-
perturbation strategy.

3.1 Objective with Constraints

A penalty method is used to combine the objec-
tive function with the constraint equations

J = JO +ωT

Nc

∑
j=1

Cj (7)

whereJO refers to Eq. 4. The constraint equa-
tions represent thickness, gap, and overlap con-
straints, which are cast using a quadratic penalty
term. For example, the thickness constraint,
based on Eq. 5, is given by

Cj =
{ [

1−h(zj)/h∗(zj)
]2

if h(zj) < h∗(zj)
0 otherwise

(8)
whereωT is a user specified constant. A similar
quadratic term is used to enforce the lower and
upper bounds for the gap and overlap distances.

3.2 Flowfield Evaluation

The spatial discretization of the flowfield equa-
tions, Eq. 6, is the same as that used in TOR-
NADO [15] (see also ARC2D [22]) for structured
multi-block H-topology grids. The discretization
consists of second-order centered-difference op-
erators with second- and fourth-difference scalar
artificial dissipation. The Spalart–Allmaras tur-
bulence model is discretized as described in [26,
9]. Overall, the spatial discretization leads to a
nonlinear system of equations

R(X,Q̂) = 0 (9)

AlthoughR is written as a function of the design
variables, we emphasize that during a flowfield
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solution the design variables, and consequently
the computational grid, are constants.

Eq. 9 is solved in a fully-coupled manner,
where convergence to steady state is achieved
using the preconditioned GMRES algorithm in
conjunction with an inexact-Newton strategy [21,
16]. The main components include matrix-
free GMRES(40) and a block-fill incomplete
LU (BFILU) preconditioner. The matrix-vector
products required at each GMRES iteration are
formed with first-order finite-differences. Right
preconditioning is used, and the preconditioner is
based on an approximate-flow-Jacobian matrix.
The level of fill for most cases is 2 [BFILU(2)],
but difficult multi-element cases may require
BFILU(4). The approximate-factorization algo-
rithm [22, 15] is used to reduce the initial resid-
ual by three orders of magnitude in order to avoid
Newton startup problems.

The approximate-flow-Jacobian matrix used
for the preconditioner is identical to the flow-
Jacobian matrix,∂R/∂Q, except for the treat-
ment of the artificial-dissipation coefficients [16].
Hence, the preconditioner contains the contribu-
tions from all components of the residual vec-
tor, namely inviscid and viscous fluxes, bound-
ary conditions, block interfaces, and the tur-
bulence model. The artificial-dissipation coef-
ficients, which include the spectral radius and
the pressure switch, are assumed to be constant
with respect to the flowfield variables. Fur-
thermore, the preconditioning matrix is formed
with only second-difference dissipation, but the
second-difference coefficient is combined with
the fourth-difference coefficient as follows,

d(2)
l = d(2)

r +φd(4)
r (10)

where the subscriptr denotes the contribution
from the right-hand side, and the subscriptl de-
notes the resulting left-hand side value used in
forming the preconditioner. This modification
does not affect the steady-state solution. Fast
convergence is obtained with the value ofφ set
to 6.0, which has been determined through nu-
merical experiments.

Eq. 10 improves the diagonal dominance of
the preconditioning matrix and reduces the work

and storage requirements of the incomplete fac-
torization. This approach is similar to the ‘di-
agonal shift’ strategy suggested by Chow and
Saad [4]. The present preconditioning matrix is a
compromise between a preconditioner based on a
first-order upwind discretization of the flowfield
equations and a preconditioner based on the ac-
tual second-order discretization. This novel ‘in-
termediate’ preconditioner is significantly more
effective than either of these more commonly
used approaches.

3.3 Gradient Evaluation

The gradient, G , of the objective function
J [X,Q(X)] is given by

G =
dJ
dX

=
∂J
∂X

+
∂J
∂Q

dQ
dX

(11)

where we reduce the vector of design variables,
X, to a scalar in order to clearly distinguish be-
tween partial and total derivatives. For problems
with multiple design variables, it may be helpful
to note thatG and∂J /∂X are[1×ND] row vec-
tors,∂J /∂Q is a [1×NF] row vector, anddQ/dX
is a [NF×ND] matrix, whereND represents the
number of design variables andNF represents the
number of flowfield variables. We assume that
the implicit functionQ(X) is sufficiently smooth
even in the presence of flow discontinuities such
as shock waves. See [10, 8] for further details.

The difficulty in Eq. 11 is the evaluation of
the termdQ/dX, referred to as the flow sensitivi-
ties. Evaluation of the partial derivatives,∂J /∂X
and ∂J /∂Q, is relatively straightforward and is
described at the end of this section. The flow sen-
sitivities are obtained by differentiating the flow-
field equations, Eq. 9, with respect to the design
variables, which yields the following large sys-
tem of linear equations

∂R
∂Q

dQ
dX

=−∂R
∂X

(12)

The direct, or flow-sensitivity, method results
from solving Eq. 12 for the flow sensitivities
dQ/dX and using these values in Eq. 11 to ob-
tain the gradient.
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In order to formulate the discrete adjoint
method, substitute Eq. 12 into Eq. 11 and define
the following intermediate problem

ψT =
∂J
∂Q

(
∂R
∂Q

)−1

(13)

where ψ is a [NF × 1] column vector. Post-
multiplication of both sides by∂R/∂Q and apply-
ing the transpose operator results in the following
linear system of equations

∂R
∂Q

T

ψ =
∂J
∂Q

T

(14)

This is known as the adjoint equation, and the
vectorψ represents the adjoint variables. The ex-
pression for the gradient becomes

dJ
dX

=
∂J
∂X

−ψT ∂R
∂X

(15)

The GMRES strategy from the flow solver,
discussed in Subsection 3.2, is adopted to solve
both the adjoint and flow-sensitivity equations.
Fast adjoint and flow-sensitivity solutions are ob-
tained with BFILU(6), GMRES(85), andφ = 6.0.
For the flow-sensitivity equation, we use matrix-
free GMRES. In addition to memory savings,
the matrix-free approach is easier to implement,
since an accurate differentiation of cumbersome
functions in the residual equations, such as the
absolute value andmin/maxfunctions, is ‘auto-
matically’ provided. Due to the transpose on the
left-hand-side of Eq. 14, the matrix-free approach
is not possible for the adjoint equation. The flow-
Jacobian matrix is stored explicitly, where we in-
clude the contribution from the spectral radius,
but we treat the pressure switch associated with
the artificial dissipation scheme as a constant.

The remaining terms in Eqs. 11 and 15,
namely the objective function sensitivities
∂J /∂X and ∂J /∂Q, as well as the residual
sensitivity ∂R/∂X, are evaluated using centered
differences. The use of centered differences for
the evaluation of the partial derivative terms is
not computationally expensive. For example,
the centered-difference formula for the residual

sensitivities is given by

∂R
∂X i

=
R(X +hei ,Q)−R(X−hei ,Q)

2h
(16)

where

h = max
(
ε · |Xi |,1×10−8) (17)

andi = 1, . . . ,ND. The ith unit vector is denoted
by ei , and a typical value ofε is 1× 10−5. It
is important to realize that Eq. 16 involves two
evaluations of only the residual vector per design
variable andnot two flowfield solutions. Note
that the evaluation of residual sensitivities in-
cludes the evaluation of grid sensitivities, since
the design variables do not explicitly appear in
the residual equations except for the angle of at-
tack design variable, see [16] for further details.

3.4 Grid-Perturbation Strategy

As the shape and position of an airfoil evolve
during the optimization process, the location of
the grid nodes is adjusted from the baseline con-
figuration to conform to the new configuration.
In [16], we use an algebraic grid-perturbation
strategy that preserves the distance to the outer
boundary and relocates the grid nodes in the
normal direction proportional to the distance
from the airfoil boundary. When the optimiza-
tion problem involves the horizontal and vertical
translation of a slat or a flap, the use of this strat-
egy can result in significantly skewed grid cells
near the boundary.

In order to improve the quality of the mod-
ified grid, we present a new grid-perturbation
strategy given by

ynew
k = yold

k +
∆y
2

[1+cos(πSk)] (18)

where∆y represents the airfoil shape change.Sk

is the normalized arclength distance given by

Sk =
1
Lg

k

∑
i=2

Li k = 2, . . . ,kmax−1 (19)

whereS1 = 0, Li is the length of a segment be-
tween nodesk andk−1, andLg is the grid-line
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length from the body to the outer boundary. An
evaluation of the new grid-perturbation strategy
is presented in [17], where we demonstrate that
the new strategy provides superior estimates of
aerodynamic performance.

4 Validation

Before presenting design examples for high-lift
configurations, we carefully validate the perfor-
mance of the flow solver and the gradient com-
putation algorithm. All grids for this and the fol-
lowing sections consist of approximately 31,000
nodes. The off-wall spacing is2× 10−6c, the
distance to the outer boundary is12c, the spac-
ing at the H-topology grid stagnation points is
2× 10−5c, and the trailing-edge clustering is
2×10−3c. The reported CPU times are obtained
on a 667 MHz Alpha 21264 processor (SPECfp
2000 rating of 562 peak).

4.1 Flow-Solver Performance

A fast solution of the flowfield equations is a
critical component of an effective design algo-
rithm, since an evaluation of the objective func-
tion is required at each iteration of the optimizer.
The performance of the flow solver is examined
for the NLR 7301 configuration atM∞ = 0.25,
α = 8◦ andRe= 2.51× 106. Fig. 3 shows that
the Newton–Krylov flow solver (denoted as NK)
is approximately two to three times faster than the
approximate-factorization flow solver (denoted
as AF). For many cases, this speed-up can be
even larger. Initially, the convergence rate of
both flow solvers is identical, since approximate-
factorization is used as a startup procedure for the
Newton–Krylov flow solver.

One of the main difficulties associated with
Newton’s method is the startup procedure. The
Newton–Krylov flow solver is particularly well
suited for the design problem since once we ob-
tain the solution for the initial airfoil shape, we
warm-start the remaining flow solves. If the step-
sizes during the line-search procedure are suffi-
ciently small, the startup procedure using approx-
imate factorization is not necessary. The warm-
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Fig. 3 Flow-solver performance

started flow solves typically converge in 2/3 of
the original flow solve time.

4.2 Gradient Accuracy

Finite-difference gradients provide a benchmark
that is used to establish the accuracy of the gra-
dient computation using the flow-sensitivity and
adjoint methods. A subsonic lift-enhancement
problem for the NLR 7301 configuration is con-
sidered. During the computation of the finite-
difference gradient, the flowfield solution is con-
verged 14 orders of magnitude. The flow-
sensitivity and adjoint equations are converged 8
orders of magnitude.

The freestream conditions areM∞ = 0.25,
α = 4◦, andRe= 2.51× 106. We compute the
gradient of the objective function, Eq. 4, with re-
spect to control point 5 on the main airfoil (de-
noted as 5M), control point 4 on the flap (denoted
as 4F), and the horizontal and vertical flap dis-
placements (denoted asFx andFy, respectively),
see Fig. 1. The target drag coefficient,C∗D, is set
equal to the initial drag coefficient, while the tar-
get lift coefficient,C∗L , is set equal to2.2, which
represents a 2.5% increase from the initial value.
The values ofωL and ωD in Eq. 4 are both set
to 1.0 and there are no side constraints. Ta-
ble 1 shows that there is an excellent agreement
between the finite-difference, adjoint, and flow-
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Table 1 Gradient accuracy

Design Finite Adjoint S-MFa

Variable Difference (% Diff.)b (% Diff.)b

5M -0.01228 0.02 -0.07
4F -0.08533 -0.19 -0.07
Fx -0.02591 0.06 -0.02
Fy -0.03363 -0.05 -0.05

a matrix-free flow-sensitivity
b % Diff = (G −GFD)/GFD×100

sensitivity gradients.

4.3 Gradient Computation Efficiency

Fig. 4 shows the convergence of the ad-
joint and flow-sensitivity equations for the lift-
enhancement problem introduced in the previous
subsection. The residuals of the flow-sensitivity
equation are shown for each design variable.
Fig. 4 highlights the influence of different right-
hand-side vectors on the convergence of GM-
RES(85). Note that the initial guess for the ad-
joint and flow-sensitivity solution vectors is zero.
The left-hand side of the flow-sensitivity equa-
tion, Eq. 12, is the flow-Jacobian matrix. This
matrix remains the same for each design variable.
For the adjoint equation, Eq. 14, the left-hand
side is the transpose of the flow-Jacobian ma-
trix. The transpose operator does not change the
eigenvalues of the flow Jacobian. Although the
flow-sensitivity equation converges faster than
the adjoint equation, the flow-sensitivity equation
must be solved for each design variable, resulting
in a much longer gradient computation time.

Fig. 5 compares the convergence history of
the adjoint and flowfield equations with respect
to CPU time. The time for the formation of the
preconditioning matrices is included in Fig. 5.1

It is necessary to converge the adjoint equation

1In Fig. 5, the ‘flat step’ in the convergence of the
flow solver after a three order-of-magnitude decrease in the
residual indicates the formation time of the preconditioner.
For the adjoint equation, this time is indicated at the start
of the convergence history.
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Fig. 4 GMRES convergence (S-MF denotes
matrix-free flow-sensitivity, D.V. denotes design
variable)

only three orders of magnitude in order to ob-
tain gradients of sufficient accuracy [23, 18, 12].
This level of convergence is achieved in approx-
imately 45 seconds, as shown in Fig. 5. For
the flowfield equations, we typically reduce the
residual by ten orders of magnitude in order to
prevent stalling of the line searches once the so-
lution is close to the optimum. This conver-
gence level is achieved in 245 seconds, and con-
sequently, the gradient is obtained in less than
one-fifth of the flow solve time.

5 Design Examples

5.1 Flap Position Optimization

The goal of this design example is to determine
the optimal gap and overlap distances for the
NLR 7301 configuration, such that the result-
ing configuration achieves a higher lift coefficient
while maintaining the same (or lower) drag coef-
ficient. The freestream conditions are specified
in Subsection 4.2. The initial values ofCL and
CD are 2.145 and 0.04720, respectively. The ob-
jective function is given by Eq. 4, where we set
C∗L = 2.180andC∗D equal to the initial drag coeffi-
cient. The weightsωL andωD are set to 1.0. The
design variables are the horizontal and vertical
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Fig. 5 Comparison of adjoint and flow solve con-
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displacements of the trailing edge of the flap, as
indicated in Fig. 1. The gap and overlap limits are
set to±0.5%c and±1.0%c, respectively, based
on the initial configuration. The weight,ωT, as-
sociated with the gap and overlap constraints is
set to0.05. The gradient is computed using the
adjoint method.

Table 2 and Fig. 6 summarize the results.
Within a few flowfield and gradient evaluations,
the flap reaches the maximum allowable over-
lap distance of approximately−4.3%c, at which
point the overlap penalty function becomes ac-
tive. The optimization converges to the design
#1 configuration, shown in Fig. 6. A new grid
is generated for this configuration and the corre-
sponding values ofCL andCD are given in Ta-
ble 2. The optimization is restarted from the new
grid with the same objective function. This pro-
cedure is continued until convergence to the final
design is obtained (see Fig. 6), where the gap and
overlap constraints are no longer active. Note that
the drag objective is satisfied for all the designs.
Consequently, the optimization is purely attempt-
ing to maximize the lift coefficient. Overall, a
1.4%increase in the value of the lift coefficient is
obtained. This is achieved by an increased load-
ing on the main element as well as the flap, as
shown in Fig. 7.

Example convergence histories for the design

Table 2 Gap-overlap optimization summary

Design CL CD Ga Ob

NLR 7301 2.145 0.04720 2.40 -5.31
#1 2.165 0.04687 1.99 -4.28
#2 2.173 0.04677 1.95 -3.30

Final 2.175 0.04675 2.02 -2.68
Target 2.180 ≤ 0.0472

a Gap(%c)
b Overlap(%c)
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Flow Solves and Gradient Evaluations
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Fig. 8 Convergence histories for gap-overlap op-
timization

#2 and final configurations are shown in Fig. 8.
The oscillations in the L2 norm of the gradient
for design #2 are due to the presence of the gap
and overlap constraints. The norm of the gradient
is reduced by several orders of magnitude, which
indicates that the optimization converged to a lo-
cal minimum.

Given that the target value of the lift coeffi-
cient is not achieved at the final design configura-
tion (see Table 2), it is somewhat surprising that
further design improvements cannot be realized
by further extending the effective chord of the
configuration. The convergence of the gradient
in Fig. 8 indicates that a local optimum has been
found, but a global optimum is not guaranteed. In
order to verify the uniqueness of the optimal so-
lution, the optimization is restarted from a differ-
ent initial condition. The flap is re-positioned to a
gap of2.9%c and an overlap of−0.5%c, i.e., the
leading edge of the flap is almost aligned with the
trailing edge of the main element. Fig. 9 shows
that the optimization converges to the same opti-
mum solution. The data labeled ‘G24-O53’ show
the convergence to the optimum solution from the
original configuration, with designs #1 and #2 in-
dicated, while the data labeled ‘G29-O05’ show
the convergence to the same optimum solution
from the new initial conditions.

Overlap (%c)
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-5 -4 -3 -2 -1 0
1.9
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2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

G24-O53
G29-O05

1
2

Fig. 9 Convergence to optimal gap-overlap dis-
tances from two distinct initial conditions

Fig. 10 Flap shape and position design variables

5.2 Flap Shape and Position Optimization

The flap position optimization example presented
in Subsection 5.1 is expanded to include flap
shape changes. As shown in Fig. 10, a B-spline
curve is fitted over a portion of the upper surface
of the flap, such that the cruise (flap-stowed) con-
figuration is not affected by the shape modifica-
tions. The design variables consist of the four
shaded control points, as well as the horizontal
and vertical flap displacements.

The objective function and all the optimiza-
tion parameters remain unchanged from Sub-
section 5.1 except for the target lift coefficient,
which is increased to 2.2. Table 3 and Fig. 11
summarize the results. The optimization is
started from the optimal gap and overlap values
obtained previously, which is denoted as the ini-
tial configuration in Table 3 and Fig. 11. For the
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Table 3 Flap optimization summary

Design CL CD Ga Ob

NLR 7301 2.145 0.04720 2.40 -5.31
Initial 2.175 0.04675 2.02 -2.68
Final 2.2 0.04723 2.06 -2.40
Target 2.2 ≤ 0.0472

a Gap(%c)
b Overlap(%c)

X/C

Y
/C

0.9 0.95 1 1.05

-0.05

-0.025

0

0.025

0.05
NLR 7301
Initial
6 D. V.

Fig. 11 Flap shape and position summary (D.V.
denotes design variable)

final design, the gap distance remains approxi-
mately constant, but the thickness of the flap in-
creases considerably near the leading edge, as
shown in Fig. 11. The optimization converges
in 25 flowfield and gradient evaluations. A new
grid is generated for the final configuration, and
the corresponding values of the lift and drag co-
efficients are provided in Table 3. Overall, the
final design achieves a 2.5% increase in the lift
coefficient value while almost no drag penalty
is incurred when compared with the original
NLR 7301 configuration. The pressure distribu-
tions for the main element and flap are shown in
Fig. 12.

6 Conclusions

A Newton–Krylov algorithm for the analysis and
design of multi-element airfoil configurations has
been presented. The accuracy of the objective
function gradient, based on the discrete-adjoint
and flow-sensitivity methods, is excellent. Fur-
thermore, the gradient is obtained in approxi-
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1
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C
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0

0.5

1

Fig. 12 Cp distribution for main element and flap

mately one-fifth of the flow solve time when us-
ing the adjoint method. Overall, the results indi-
cate that the new algorithm provides an efficient
and robust tool for complex aerodynamic design
problems.
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